Primary biliary cirrhosis (PBC) is considered a model autoimmune disease due to the clinical homogeneity of patients and the classic hallmark of anti-mitochondrial antibodies (AMAS). Indeed, the presence of AMAS is the most highly directed and specific autoantibody in autoimmune diseases. However, the contribution of B cells to the pathogenesis of PBC is unclear. Thus, although AMAs appear to interact with the biliary cell apotope and contribute to biliary pathology, there is no correlation of disease severity and titer of AMA. The recent development of well characterized mAbs specific for the B cell populations, anti-CD20 and anti-CD79, and the development of a well defined xenobiotic induced model of autoimmune cholangitis, prompted us to utilize these reagents and the model to address the contribution of B cells in the pathogenesis of murine PBC. Prior to the induction of autoimmune cholangitis, mice were treated with either antiCD20, anti-CD79, or isotype matched control mAb and followed for B cell development, the appearance of AMAs, liver pathology and cytokine production. Results of the studies reported herein show that the in vivo depletion of B cells using either anti-CD20 or anti-CD79 led to the development of a more severe form of cholangitis than control mice which is in contrast with results from a number of other autoimmune models which have documented an important therapeutic role of B cell specific depletion. The anti-CD20/CD79 treated mice have increased liver T cell infiltrates and higher levels of pro-inflammatory cytokines. In conclusion, our results