Abstract

Studies using lower organisms and cultured mammalian cells have revealed that the COP9 signalosome (CSN) has important roles in multiple cellular processes. Conditional gene targeting was recently used to study CSN function in murine T-cell development and activation. Using the Cre-loxP system, here we have achieved postnatal hepatocyte-restricted knockout of the csn8 gene (HR-Csn8KO) in mice. The protein abundance of other seven CSN subunits was differentially downregulated by HR-Csn8KO and the deneddylation of all cullins examined was significantly impaired. Moreover, HR-Csn8KO-induced massive hepatocyte apoptosis and evoked extensive reparative responses in the liver, including marked intralobular proliferation of biliary lineage cells and trans-differentiation and proliferation of the oval cells. However, division of pre-existing hepatocytes was significantly diminished in HR-Csn8KO livers. These findings indicate that Csn8 is essential to the ability of mature hepatocytes to proliferate effectively in response to hepatic injury. The histopathological examinations revealed striking hepatocytomegaly in Csn8-deficient livers. The hepatocyte nuclei were dramatically enlarged and pleomorphic with hyperchromasia and prominent nucleoli, consistent with dysplasia or preneoplastic cellular alteration in HR-Csn8KO mice at 6 weeks. Pericellular and perisinusoid fibrosis with distorted architecture was also evident at 6 weeks. It is concluded that CSN8/CSN is essential to postnatal hepatocyte survival and effective proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.