Nitric oxide (NO) and ursodeoxycholic acid (UDCA) are endogenous molecules involved in physiological processes associated with inflammation. Since inflammatory processes are present in the mechanisms of many diseases, these molecules are important for the development of new drugs. Herein, we describe the synthesis of a well-defined bifunctional dendrimer with 108 termini bearing 54 NO-releasing groups and 54 UDCA units (Dendri-(NO/UDCA)54). For comparison, a lower-generation dendrimer bearing 18 NO-releasing groups and 18 UDCA units (Dendri-(NO/UDCA)18) was also synthesized. The anti-inflammatory activity of these dendrimers was evaluated, showing that the bifunctional dendrimers have an inverse correlation between concentration and anti-inflammatory activity, with an effect dramatically pronounced for Dendri-(NO/UDCA)54 20, which at just 0.25 nM inhibited 76.1% of IL-8 secretion. Data suggest that nanomolar concentrations of these dendrimers aid in releasing NO in a safe and controlled way. This bifunctional dendrimer has great potential as a drug against multifactorial diseases associated with inflammatory processes.