AbstractThe presence of aromatics in diesel oil significantly reduces its overall quality. Ionic liquids (ILs) combined with extraction technology were proposed to separate three typical bicyclic aromatics and two monocyclic aromatics from diesel oils. The solubility of IL in raffinate phase was introduced as a crucial factor in IL screening process. The accuracy of COSMO‐RS model was evaluated using 2942 LLE data points. 1,3‐dimethylimidazolium methylsulfate was considered a suitable extractive solvent. The optimal operating conditions were identified by varying the extraction temperatures, solvent ratios, and stages. Heptane was used as a back‐extractive solvent to recover IL; the regenerative and humidity stability of selected IL were proven. The separation mechanisms were explored through molecular dynamic simulation and quantum chemistry calculation. Cation plays a more critical role in the extraction process than anion. The extraction performance mainly depends on the π–π stacking and C–H···O H‐bond formed between BAHs molecules and IL.
Read full abstract