Goat milk has gained recognition for its medicinal, cosmetic, and health benefits, particularly its potential to improve human skin conditions. Its therapeutic properties are attributed to bioactive compounds influenced by genes such as lactoferrin (LTF), lysozyme (LYZ), and β-casein (CSN2), known for their antimicrobial, immunomodulatory, and anti-inflammatory effects. Genetic factors are hypothesized to shape goat milk’s composition and its effectiveness in managing dermatological conditions like eczema and psoriasis. Understanding these genetic determinants is critical to optimizing the use of goat milk in skin health applications. This review aims to explore the application of genomic tools to elucidate the medicinal properties of goat milk and its implications for skin care. By identifying the specific genes and molecular mechanisms underpinning its therapeutic effects, genomic studies have provided insights into the bioactive constituents of goat milk, such as peptides, proteins, and lipids, which contribute to its dermatological efficacy. Candidate genes, including growth hormone receptor (GHR), butyrophilin (BTN1A1), and lactoglobulin (LGB), have been identified as critical for enhancing milk quality and functionality. Future research should integrate genomic data with functional studies to further investigate goat milk’s immunomodulatory, antimicrobial, and antioxidant activities. Such insights could advance targeted breeding strategies and innovative formulations for managing inflammatory skin conditions and promoting skin health.
Read full abstract