We study Sobolev Hs(Rn)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H^s(\\mathbb {R}^n)$$\\end{document}, s∈R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$s \\in \\mathbb {R}$$\\end{document}, stability of the Fourier phase problem to recover f from the knowledge of |f^|\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$| \\hat{f} |$$\\end{document} with an additional Bessel potential Ht,p(Rn)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$H^{t,p}(\\mathbb {R}^n)$$\\end{document} a priori estimate when t∈R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t \\in \\mathbb {R}$$\\end{document} and p∈[1,2]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p \\in [1,2]$$\\end{document}. These estimates are related to the ones studied recently by Steinerberger in ”On the stability of Fourier phase retrieval” J. Fourier Anal. Appl., 28(2):29, 2022. While our estimates in general are different, they share some comparable special cases and the main improvement given here is that we can remove an additional imaginary term and obtain sharper constants. We also consider these estimates for the quotient distances related to the non-uniqueness of the Fourier phase problem. Our arguments closely follow the Fourier analysis proof of the Sobolev embeddings for Bessel potential spaces with minor modifications.