Our understanding of the timing and pathway of human arrival to the Americas remains an important and polarizing topic of debate in archaeology and anthropology. Traditional consensus, supported by archaeological and paleoenvironmental data, favors a ‘swift peopling’ of the Americas from Asia via the Bering Land Bridge during the last Glacial termination. More recent genetic data and archaeological finds have challenged this view, proposing the ‘Beringian standstill hypothesis’ (BSH), wherein a population of proto-Americans migrated from Asia during, or even prior to the Last Glacial Maximum (LGM) and lived in Beringia for thousands of years before their eventual spread across the American continents. Using a sediment archive from Lake E5 (68.641667° N, 149.457706° W), located on Alaska's North Slope, we present new data supporting the BSH and shedding new light on the environmental impact of these early American populations. Fecal biomarkers support human presence in the environs of the lake, and our data demonstrate elevated biomass burning in this region during the last Glacial. Elevated burning defies the expectation that natural fires would be less frequent in the Arctic during the last Glacial, thereby suggesting human ignition as the likely culprit. Our data shed new light on the pathway and timing of human migration to the Americas and demonstrate the possibility of the sustainable coexistence of humans and the Ice Age megafauna in Beringia prior to their extinction.
Read full abstract