A new cost-effective in-depth fluid diversion has been developed and reported. In this paper, the diverting agent is prepared successfully from natural bentonite particles that were modified with N-isopropylacrylamide (NIPAM) and acrylic acid (AA) copolymers. First, bentonite particles were intercalated with small precursor molecules that contained functional groups. These precursors were used to reduce the bentonite particle size and introduce a vinyl group for subsequent polymerization. Then, poly(NIPAM-co-AA) was grafted onto hydrophilic bentonite through a free radical polymerization process. The grafted bentonite morphology, microstructure, and thermal stability were investigated using FTIR spectroscopy, dynamic light scattering, XRD, and TGA measurements. The particle dispersion stability and rheological properties have been investigated by using a turbidimeter and rheometer. Sand packs and core flooding tests were conducted to investigate the injectivity and determine permeability reductions. Exper...