Metal-conducting polyaniline (PANI)-based nanocomposite materials have attracted attention in various applications due to their synergism of electrical, mechanical, and optical properties of the initial components. Herein, metal-PANI nanocomposites, including silver nanoparticle-polyaniline (AgNP-PANI), zinc oxide nanoparticle-polyaniline (ZnONP-PANI), and silver-zinc oxide nanoparticle-polyaniline (Ag–ZnONP-PANI), were prepared using the two processes. Nanocomposite-based electrode platforms were prepared by depositing AgNPs, ZnONPs, or Ag–ZnONPs on a PANI modified glass carbon electrode (GCE) in the presence of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide/N-Hydroxysuccinimide (EDC/NHS, 1:2) as coupling agents. The incorporation of AgNPs, ZnONPs, and Ag–ZnONPs onto PANI was confirmed by UV-Vis spectrophotometry, which showed five absorbance bands at 216 nm, 412 nm, 464 nm, 550 nm, and 831 nm (i.e., transition of π-π*, π-polaron band transition, polaron-π* electronic transition, and AgNPs). The FTIR characteristic signatures of the nanocomposite materials exhibited stretching arising from C–H aromatic, C–O, and C–N stretching mode for benzenoid rings, and =C–H plane bending vibration formed during protonation. The CV voltammograms of the nanocomposite materials showed a quasi-reversible behavior with increased redox current response. Notably, AgNP–PANI–GCE electrode showed the highest conductivity, which was attributed the high conductivity of silver. The increase in peak currents exhibited by the composites shows that AgNPs and ZnONPs improve the electrical properties of PANI, and they could be potential candidates for electrochemical applications.