Abstract

The concept of bend-imitating description as applied to the one-electron quantum mechanics in sharply-bent ideal electron waveguides and its development into a self-consistent theory are presented. In general, the theory allows one to model each particular circular-like bend of a continuous quantum wire as some specific multichannel scatterer being point-like in the longitudinal direction. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting one to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable to the analytical investigation of spectral and transport properties related to the ideal sharply-bent 3D wire-like structures of fixed cross-section and is adaptable to the 2D wire-like structures, as well as to the wire-like structures in the magnetic field perpendicular to the wire bending plane. In the framework of bend-imitating approach, the investigation of the electron scattering in a doubly-bent 2D quantum wire with S-like bend has been made, and the explicit dependences of the transmission and reflection coefficients on geometrical parameters of a structure, as well as on the electron energy, have been obtained. The total elimination of the mixing between the scattering channels of a S-like bent quantum wire is predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.