A pin-slot positioning method was proposed to fabricate carbon fiber reinforced polymer (CFRP) metamaterials of hexagonal and zero Poisson’s ratio semi-re-entrant honeycombs with the same mass of monolayer continuous twill-woven carbon fiber/epoxy prepregs. The in-plane compressive collapse of CFRP honeycombs was explored through experiments and finite element (FE) simulations. Furthermore, analytical models were developed to predict the modulus and initial collapse stress of the hexagonal and semi-re-entrant honeycombs. Good agreement is achieved between analytical predictions, FE simulations and experimental results. It is shown that the initial collapse of CFRP honeycombs is by the bending of cell walls. Once initial collapse has been attained, both hexagonal and semi-re-entrant honeycombs have a stress softening. The collapse and failure modes of CFRP honeycombs strongly depend on cellular configurations and loading directions.
Read full abstract