Abstract

Structures with adaptive stiffness characteristics present an opportunity to meet competing design requirements, thus achieving greater efficiency by the reconfiguration of their topology. Here, the potential of using changes in the topology of planar lattice structures is explored to achieve this desired adaptivity and observe that lattice structures with rectangle-like unit-cells may undergo elastic buckling or bending of cell walls when subject to longitudinal compression. Under sufficient load intensity, cell walls can deform and contact neighbouring cells. This self-contact is harnessed to change the topology of the structure to that of a kagome-like lattice, thereby establishing new load paths, thus enabling enhancement, in a tailored manner, of the effective compressive and shear stiffness of the lattice. Whilst this phenomenon is independent of characteristic length scale, we focus on macroscopic behaviour (lattices of scale ≈ 200 mm). Experimentally observed responses of 3D-printed lattices correlate excellently with finite element analysis and analytical stiffness predictions for pre- and post-contact topologies. The role of key geometric and stiffness parameters in critical regions of the design space is explored through a parametric study. The non-linear responses demonstrated by this topology morphing lattice structure may offer designers a new route to tailor elastic characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.