Abstract

Metallic thermal protection systems comprising of sandwich panels consisting of hexagonal honeycomb sandwich structures are envisaged to be used in advanced transportation systems like hypersonic vehicles and reusable launch vehicles. The assessment of compressive mechanical behaviour is necessary to understand the response of sandwich structures to aerothermal loads. The fabrication methodology for realizing Ni based superalloy Superni 263 hexagonal honeycomb sandwich panels is established. This work is aimed at understanding the effect of sandwich panel geometry parameters like hexagonal cell size and core thickness on the out-of-plane flatwise compressive behaviour at room temperature. The ultimate compressive strength decreases with increasing core height irrespective of the cell sizes investigated. The dependence of specific compressive strength on the cell size is established by a power law relationship. The compressed sandwich panels subjected to understand the deformation behaviour indicated the dominance of cell wall bending and occasional fracture, however in the case of sandwich panels with higher core thickness cell wall buckling coupled with shearing at the face sheet vicinity is noticed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.