Worldwide, breast cancer (BC) is one of the most common cancers in women and is responsible for the highest number of cancer-related deaths among women, with a special clinical behavior and therapy response. Triple-negative breast cancer (TNBC) is seen as a highly invasive BC, characterized by a short survival, higher mortality, recurrence, and metastasis when it is compared to the other BC subtypes. The molecular subtyping of TNBC based on mRNA expression levels does not accurately reflect protein expression levels, which impacts targeted therapy effectiveness and prognostic predictions. Most TNBC cases exhibit a high frequency of homologous recombination (HR) DNA repair deficiency (HRD) signatures and are associated with a complex genomic profile. Biomarker research in TNBC includes investigating genetic mutations, gene expression patterns, immune system-related markers, and other factors that can provide valuable information for diagnosis, treatment selection, and patient outcomes. Additionally, these biomarkers are often crucial in the development of personalized and precision medicine approaches, where treatments are customized to each patient's unique characteristics. This ongoing research is essential for improving the management and outcomes of TNBC, which is a challenging and heterogeneous form of breast cancer. The findings of this research have practical implications for refining treatment strategies, particularly in selecting appropriate systemic therapies and integrating traditional treatment modalities like surgery and radiotherapy into comprehensive care plans for TNBC patients.