Abstract

Most medications undergo metabolism and elimination via CYP450 enzymes, while uptake and efflux transporters play vital roles in drug elimination from various organs. Interactions often occur when multiple drugs share CYP450-transporter-mediated metabolic pathways, necessitating a unique clinical care strategy to address the diverse types of CYP450 and transporter-mediated drug-drug interactions (DDI). The primary focus of this review is to record relevant mechanisms regarding DDI between COVID-19 and tuberculosis (TB) treatments, specifically through the influence of CYP450 enzymes and transporters on drug absorption, distribution, metabolism, elimination, and pharmacokinetics. This understanding empowers clinicians to prevent subtherapeutic and supratherapeutic drug levels of COVID medications when co-administered with TB drugs, thereby mitigating potential challenges and ensuring optimal treatment outcomes. A comprehensive analysis is presented, encompassing various illustrative instances of TB drugs that may impact COVID-19 clinical behavior, and vice versa. This review aims to provide valuable insights to healthcare providers, facilitating informed decision-making and enhancing patient safety while managing co-infections. Ultimately, this study contributes to the body of knowledge necessary to optimize therapeutic approaches and improve patient outcomes in the face of the growing challenges posed by infectious diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.