In this work, the fracture behaviour of repaired honeycomb/carbon-epoxy sandwich panels under edgewise compression and three-point bending loading was analysed. Assuming the occurrence of damage resulting from a complete perforation leading to an open hole, the followed repair strategy consists of plug filling the core hole and considering two scarf patches with an angle of 10° in order to repair the damaged skins. Experimental tests were performed on undamaged and repaired situations in order to address the alteration in the failure modes and assess the repair efficiency. It was observed that repair recovers a large part of the mechanical properties of the corresponding undamaged case. Additionally, a three-dimensional finite element analysis incorporating a mixed-mode I + II + III cohesive zone model was performed for the repaired cases. Cohesive elements were considered in the several critical regions prone to damage development. The failure modes and the resultant load-displacement curves obtained numerically were compared with the experimental ones. It was concluded that the numerical model is suitable for estimating the fracture behaviour of sandwich panel repairs.
Read full abstract