Abstract
Abstract In this study, the impact behavior of sandwich panels of natural rubber-based syntactic foam cores with aluminum face sheets was investigated experimentally and with the help of finite element analysis (FEA). Syntactic foam cores were produced byadding glass bubbles (GB) to the natural rubber (NR). Natural rubber was dissolved at room temperature with chemical solvents mixed with glass bubbles at 10, 20, and 30 weight percentages. Very low density (~0.8 g × cm-3) and high compressible foams were obtained depending on the GB weight percentages. Aluminum face sheets and the NR/GB syntactic foam core developed were joined by adhesive bonding to produce sandwich beam specimens. The sandwich beams manufactured in this way were subjected to impact loading under three-point bending boundary conditions experimentally. The experimental results were compared with finite element simulation results under the same loading and boundary conditions. The damage mechanism of the sandwich panels devised were analyzed. According to the results, natural rubber containing an additive of 20 wt.-% GBs showed better impact resistance than the others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.