The radiological impact of radionuclide transport via groundwater pathways at the Wolsong Low- and Intermediate-Level Waste (LILW) Disposal Center was estimated by considering site-specific characteristics, including hydrogeology, geochemistry, and land use. Human intrusion scenarios, such as groundwater well development, were analyzed to evaluate potential pumping volumes and radionuclide migration pathways. Particular attention was given to the hydrological and geochemical aspects of radionuclide transport, with a focus on local aquifer heterogeneity, flow dynamics, and interactions with engineered barriers and surrounding rock formations that delay radionuclide migration through sorption and other retention mechanisms. Sorption coefficients (Kd), calibrated using site-specific geochemical data, were incorporated to ensure realistic modeling of radionuclide behavior. A hierarchical approach integrating scenario screening, particle tracking techniques, and mass transfer modeling was employed. Numerical simulations using FEFLOW ver. 7.3 and GoldSim ver. 14.0 software provided insights into near-field and far-field transport phenomena under well pumping conditions. The results revealed distinct spatial flux behaviors, where carbon-14 (14C) dominated near-field flux due to its high inventory, while technetium-99 (99Tc) emerged as the primary dose contributor in the far-field flux, owing to its anionic nature and limited sorption capacity. Additionally, under high-pH conditions near concrete barriers, cellulose degradation into isosaccharinic acid was identified, enhancing radionuclide mobility through complex formation. These findings underscore the importance of site-specific sorption and speciation parameters in safety assessment and highlight the need for accurate geochemical modeling to optimize waste placement and ensure long-term disposal safety. The outcomes provide valuable insights for optimizing waste placement and contribute to the development of evidence-based safety strategies for long-term performance assessment.
Read full abstract