Abstract

In this work, we conduct an extensive study of the asymmetric heat flow, i.e. thermal rectification, present in the two-segment Frenkel Kontorova model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. We have considered systems with both high and low asymmetry and determined that, in the weak-coupling limit, thermal rectification is larger when NNN interactions are relevant. The behavior of the heat fluxes as a function of the coupling strength between the two segments is largely consistent with a well-defined rectification for larger system sizes. The local heat fluxes present a very different behavior for systems with high and low asymmetry. The results of this work may help in the design of molecular bridges, which have recently been shown to be able to function as thermal rectification devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.