This paper investigates the loss and thermal characteristics of a three-phase 10 kW flux-switching permanent magnet (FSPM) machine, which is used as an integrated starter generator (ISG) for hybrid electric vehicles (HEVs). In this paper, an improved method considering both DC-bias component and minor hysteresis loops in iron flux-density distribution is proposed to calculate core loss more precisely. Then, a lumped parameter thermal network (LPTN) model is constructed to predict transient thermal behavior of the FSPM machine, which takes into consideration various losses as heat sources determined from predictions and experiments. Meanwhile, a simplified one-dimensional (1D) steady heat conduction (1D-SHC) model with two heat sources in cylindrical coordinates is also proposed to predict the thermal behavior. To verify the two methods above, transient and steady thermal analyses of the FSPM machine were performed by computational fluid dynamics (CFD) based on the losses mentioned above. Finally, the predicted results from both LPTN and 1D-SHC were verified by the experiments on a prototyped FSPM machine.