On 6 February 2023, a devastating doublet of earthquakes with magnitudes of Mw 7.8 and Mw 7.6 successively struck southeastern Turkey near the border of Syria. The earthquake sequence represents the strongest earthquakes in Turkey during the past 80 years and caused an extensive loss of life and property. In this study, we processed Sentinel-1 and GPS data to derive the complete surface displacement caused by the earthquake sequence. The surface displacements were adopted to invert for the fault geometry and coseismic slip distribution on the seismogenic faults of the earthquake sequence. The results indicate that the coseismic rupture of the Turkey earthquake sequence was dominated by left-lateral strike slips with a maximum slip of ~10 m on the East Anatolian Fault Zone (EAFZ) and the Sürgü fault (SF). Significant surface ruptures are recognized based on the geodetic inversion, which is consistent with the analysis of post-earthquake satellite images. The cumulative released moment of the two earthquakes reached 9.62 × 1020 Nm, which corresponds to an event of Mw 7.95. Additionally, the interseismic fault slip rates and locking depths along the central and western segments of the EAFZ were estimated using the high-resolution long-term velocity field. The results reveal significant lateral variations of fault slip rates and locking depths along the central and western segments of the EAFZ. Generally, the estimated fault locking zone showed good spatial consistency with the coseismic fault rupture of the Mw 7.8 shock on the EAFZ. The static coulomb failure stress (CFS) change due to the Mw 7.8 earthquakes suggests that the subsequent Mw 7.6 event was certainly promoted by the Mw 7.8 shock. The stress transfers from the fault EAFZ to the fault SF were realized by unclamping the interface of the fault SF, which significantly reduces the effective normal stress on the fault plane. Large CFS increases in the western Puturge segment of the EAFZ, which was not ruptured in the 2020 Mw 6.8 and the 2023 Mw 7.8 earthquakes, highlight the future earthquake risk in this fault segment.