The viscoelastic behavior of polymer solutions is commonly measured using oscillating shear rheometry, however, the accuracy of such methods is limited by the oscillating frequency of the equipment and since the relaxation time of the dilute polymer solutions is short, this requires measurement at very high frequencies. Microrheology has been proposed to overcome this technical challenge. Yet the equipment for resolving the statistics of particle displacements in microrheology is expensive. In this work, we measured the viscoelastic behavior of Methocel solutions at various concentrations using a conventional epi-fluorescence microscope coupled to a high-speed intensified camera. Statistical Particle Tracking is used in analyzing the mean-squared displacement of the dispersive particles. Relaxation times ranging from 0.76 – 9.00 ms and viscoelastic moduli, G′ between 11.34 and 3.39 are reported for Methocel solutions of concentrations between 0.063 – 0.5%.