Abstract

The configurational and rheological properties of bead spring chains in time-dependent shear flows are calculated. The finite extensibility is incorporated through the constraint of constant contour length of the chain. Start-up of shear flow yields a stress overshoot, whereas oscillatory shear flow yields the same frequency dependence of the dynamic moduli as the simple bead spring model. The results show that finite extensibility can lead to non-linear rheological behavior of dilute polymer solutions. The influence of preaveraged hydrodynamic interaction on the obtained results is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.