In the course of the long-term performance (during 5 years) of a high-power source of gas ions (25 keV, 0.2 A, 600 cm2) with a plasma emitter based on cold cathode discharge, the character and rate of key constructive elements faults were determined, which allowed to calculate the inter-repair time, complexity and cost of the repair. The peculiarities of the gas-discharge system and the ion beam forming system limiting the effectiveness of ion beam treatment were revealed as well. Conditions favorable for the decrease in the discharge voltage by 50–200 V and igniting voltage up to 1.5-2 times are determined. The possibilities of lowering the minimal flow of working gas are demonstrated. The design of the discharge system with reduced sputtering rate of local areas of the hollow cathode is offered. The changes added to ion source design aimed to enhance the lifetime of the plasma chamber that is exposed to cyclic heating by the back electron beam leading to the development of through cracks, and to enlarge the rupture life of glow discharge hollow cathode by optimizing its configuration and the conditions of discharge ignition and burning, are described. The upgraded design of a multislit ion-optical system with enhanced performance ensures uniform surface distribution of ion fluence.