Abstract Two-dimensional arrays of shunted Nb/AlOx/Nb Josephson junctions have been investigated. Shapiro steps in the current–voltage ( I – V ) curve of an on-chip detector junction can be used to sense mutual phase locking of the array junctions. By scanning the array with a low-power electron beam, the phase locked junctions remain locked, whereas the unlocked junctions generate a beam-induced additional voltage drop along the array. In regions of the array’s bias current where pronounced Shapiro steps occur in the detector’s I – V curve, practically no array junction generates a beam-induced voltage signal, thus indicating complete mutual locking. For other bias currents of the array with less than maximum detected power, some of the junctions generate beam-induced signals, and can be identified as being non-locked. Our investigations allow a detailed and spatially resolved analysis of mutual phase locking in arrays of Josephson junctions. Moreover, the results obtained with autonomous arrays are compared to experiments performed with injection locked arrays.
Read full abstract