Abstract
In ion implantation systems using a hybrid magnetic-mechanical scanning, the scan along the implant disc radius is realized by magnetic scanning of an ion beam at an average frequency of 0.1 Hz. To achieve a uniform implant, a relationship has to be known between the scanning magnetic field and the resulting ion beam position. A measuring system has been developed to estimate the lateral position of an ion beam without interfering physically with the beam. The beam position is inferred from two random signals induced by the beam on two sensing electrodes, obtained by splitting a bias ring of the implanter's Faraday system. The beam-induced signals are processed digitally and the position estimate, represented by a 9-bit number, is updated at 1.5 ms (or 12 ms) intervals. Preliminary tests have demonstrated that the technique presented can be exploited for adaptive shaping of a current waveform driving the scan magnet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.