Realized measures employing intra-day sources of data have proven effective for dynamic volatility and tail-risk estimation and forecasting. Expected shortfall (ES) is a tail risk measure, now recommended by the Basel Committee, involving a conditional expectation that can be semi-parametrically estimated via an asymmetric sum of squares function. The conditional autoregressive expectile class of model, used to implicitly model ES, has been extended to allow the intra-day range, not just the daily return, as an input. This model class is here further extended to incorporate information on realized measures of volatility, including realized variance and realized range (RR), as well as scaled and smoothed versions of these. An asymmetric Gaussian density error formulation allows a likelihood that leads to direct estimation and one-step-ahead forecasts of quantiles and expectiles, and subsequently of ES. A Bayesian adaptive Markov chain Monte Carlo method is developed and employed for estimation and forecasting. In an empirical study forecasting daily tail risk measures in six financial market return series, over a seven-year period, models employing the RR generate the most accurate tail risk forecasts, compared to models employing other realized measures as well as to a range of well-known competitors.
Read full abstract