Tempero-spatial analysis of groundwater to disseminate the level of drinking water quality and industrial suitability to meet the developmental requirement of a region is a significant area of research. Accordingly, groundwater quality and geochemical interactions prevailed in a black sand mineral rich coastal village is systematically presented in appraisal of drinking and industrial uses for economic engineering purposes. The study area focused is Alappad village, Kollam, Kerala, India has numerous ecological features in a sustainable perspective. The region is unique with placer deposits where an alluvial soil aquifer–saline water–freshwater interaction occurs. This dynamics decides the pertinent hydro geochemistry, potable and designated uses of ground water in season wise. Coastal area is hereby presented based on water quality parameters predicted with the health risk assessment model with a view on human health and cancer risk due to ions (Pb, Ni, Cu, Ba, Fe, Al, Mn, Zn) in groundwater.. To ascertain industrial usage, ground water is evaluated by Langelier saturation index (LSI), Ryznar stability index (RSI), Aggressive index (AI), Larson-Skold index (LS) and Puckorius scaling index (PSI) and inferences are complemented. Chemical weathering and evaporation processes are the natural factors controlling hydrochemistry of this aquifer. This complex coastal system has Nemerow pollution index (NPI) of moderate pollution for total dissolved ions of Fe and lesser for Cu, and Cr present in groundwater. LSI indicates, water is scale forming but non corrosive (46% in PRM, 20% in MON and 47% in POM). Water quality index (WQI) in POM (ranged 28.7–79.9) was excellent for drinking, followed by PRM (23.6–218.2) and MON (33.4–202.7) seasons. This groundwater bears temporary hardness with the dominance of Ca–Mg–HCO3 water type. Health risk assessment of non-carcinogenic risk index of trace metals (Fe, Zn, Mn, and Pb) revealed, children are at ‘low risk’ and ‘medium’ risk with Ni and Cu. The carcinogenic risk index indicated 93% of samples were high Ni induced cancer risk for children, and 87% for adults due to long term ingestion (drinking water intake) pathway. Studies specific on placer mineral deposited coastal region of India are not sufficiently reported with a focus on the above perspectives. Growing need of rare earths for material, device and energy applications, placer mineral explorations can destabilise the coastal hydrosphere. Interrelations of mineral soil – water chemistry prevailed and health hazard predicted would kindle a set of sustainable deliberations. This study summarises the drinking and industrial use of coastal groundwater for future development and human well-being on the basis of quality criteria, corrosion proneness, water stability and health risk factors.
Read full abstract