Abstract

The drying curves and the degradation kinetics of three different quality attributes (total carotenoids (TC) and total polyphenols (TP) contents and antioxidant activity (AA)) of carrots during drying at different temperatures (from 40 to 90°C) have been experimentally evaluated and modeled. A diffusional model taking into account the solid shrinkage and both the external and internal water transfer resistances was used to accurately represent the water transfer in carrot during drying (average mean relative error (MRE) of 3.3 ± 0.6%). The effective moisture diffusivity was found to follow the Arrhenius relationship (Ea = 76.0 kJ/mol) and the mass transfer coefficient a linear dependence with air temperature. The Weibull model was used to satisfactorily simulate the degradation kinetics of the three quality attributes considered (average MRE of 2.8 ± 1.2% for TC content, 5.7 ± 1.0% for TP content, and 3.6 ± 1.8% for AA); these were the Ea of 52.7 kJ/mol for TC; 22.1 kJ/mol for TP; and 27.5 kJ/mol for AA kinetics. By using the proposed models, the estimated optimum drying temperature to best retain the total carotenoids content ranged between ca. 42–46°C; meanwhile, in order to maintain the TP content and the antioxidant activity at the highest levels, the drying needed to be carried out at temperatures of ca. 60–75°C. These results indicate that the TC retention is more influenced by the drying temperature, while the TP and AA retentions are more sensitive to drying time exposure. However, it was possible to establish a global optimum air temperature which ranged between 52.6 and 57.7°C, decreasing the TC, TP, and AA retentions by less than 2.2% from their respective optimal values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.