Based on the analysis of standards for the testing of lubricants, both liquid and plastic, on a four-ball tribometer, and the analysis of the parameters by which lubricants are evaluated, this paper proposes a methodology and an integral parameter for the estimation of tribological properties. The methodological approach proposed in this paper allows for the integration of a variety of parameters provided in the standards for the testing of lubricants into one indicator. Herein, we show that the developed technique is based on the energy approach and takes into account the specific wear work of the test material (steel balls) in the lubricating medium to be investigated. The results of laboratory tests of a wide range of lubricants are presented: hydraulic fluids, motor and transmission oils of various purposes and classifications. It is shown that the magnitude of the integral parameter can be used to assess the effectiveness of anti-wear and anti-scuff additives in base lubricants, as well as the ranges of their applications. This allows for differentiation and quantitative evaluation of the effectiveness of such additives. The obtained results allow us to state that all tests according to the developed method are reproducible and homogeneous, which is confirmed using the Cochran criterion. The coefficient of variation during testing does not exceed 18%. We show that the presented methodology and the integral parameter can be used in the first stage of the laboratory selection tests of new lubricants and additives of various origins, reducing the costs of their development and implementation.