This study highlights the advantages of chondroitin sulfate (CS) as a sublayer combining selective low-fouling properties, low-platelet adhesion and pro-adhesive properties on endothelial cells, making CS promising for vascular graft applications. These properties were evaluated by comparing CS with well-known low-fouling coatings such as poly(ethylene glycol) (PEG) and carboxymethylated dextran (CMD), which were covalently grafted on primary amine-rich plasma polymerized (LP) films. Protein adsorption studies by quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence measurements showed that CS is as effective as PEG in reducing fibrinogen adsorption (~90% reduction). CS also largely reduced adsorption of bovine serum albumin (BSA) as well as fetal bovine serum (FBS) but to a lower extent than PEG and CMD surfaces (72% vs 85% for BSA and 66% vs 89% for FBS). Whole blood perfusion assays indicated that, while LP surfaces were highly reactive with platelets, PEG, CMD, and CS grafted surfaces drastically decreased platelet adhesion and activation to levels significantly lower than polyethylene terephthalate (PET) surfaces. Finally, while human umbilical vein endothelial cell (HUVEC) adhesion and growth were found to be very limited on PEG and CMD, they were significantly increased on CS compared to that on bare PET and reached similar values as those for tissue culture polystyrene positive controls. Interestingly, HUVEC retention during perfusion with blood was found to be excellent on CS but poor on PET. Overall, our results suggest that the CS surface has the advantage of promoting HUVEC growth and resistance to flow-induced shear stress while preventing fibrinogen and platelet attachment. Such a nonthrombogenic but endothelial-cell adhesive surface is thus promising to limit vascular graft occlusion.
Read full abstract