BackgroundUveal melanoma (UM) is the most common primary intraocular tumour in adults, and approximately 50% of patients will develop metastasis. Epigenetic changes are a major factor in cancer progression. We aimed to determine whether methylation profiles could be altered using a DNA methyltransferase (DNMT) inhibitor in UM cell lines.MethodsFour primary and metastatic UM cell lines were treated with azacytidine and analysed for cell proliferation, colony formation, and BAP1 protein expression. Genomic and cell-free (cf)DNA methylation were compared.ResultsIn all cell lines, azacytidine treatment resulted in dose-dependent effects on proliferation, colony formation, and radiosensitivity. Methylation profiling revealed differences in methylation between cell lines according to BAP1 expression. Matched primary and metastatic cell lines showed very similar patterns. Alterations were seen in pathways known to be important in UM progression, such as PI3K/Akt and MAPK signaling, and in pathways involved in cancer progression, such as regulation of stemlike potential, cell motility, and invasion. These changes were maintained in genomic and cell-free DNA.ConclusionsThis data suggests that DNMT inhibitors cause changes in UM cells that are maintained in cfDNA. The results suggest that targeting methylation in UM treatment and monitoring response to treatment using cfDNA methylation could be a valuable tool.
Read full abstract