Plant viruses are disseminated by either vertical (vegetative multiplication or sexual reproduction) or horizontal (vector-mediated) propagation. Plant pararetroviruses—members of the Caulimoviridae family—have developed an alternative strategy for vertical propagation via integration within the host plant genome, although integration is not required for viral replication. Integrated endogenous pararetrovirus (EPRV) sequences have undergone extensive viral genome rearrangements and contain more than one copy of the viral genome. Furthermore, EPRV can become infectious upon spontaneous escape of active virus following stresses such as wounding, tissue culture, or interspecific crosses. Such infectious EPRV are of great importance, not only in terms of their ability to precipitate epidemic outbreaks but also because of their effect on breeding of numerous plant genomes in temperate and tropical crops. This is especially true for banana, a crop susceptible to banana streak viruses, the causative agents of banana streak disease. Thus, the classical three-component banana–Banana streak virus (BSV)–mealybug pathosystem can be expanded to include endogenous BSV as an alternative source of active virions. The BSV-banana pathosystem is one of only three pathosystems known to date to harbor this remarkable feature, and the present review focuses exclusively on it to illustrate this four-partner interaction.
Read full abstract