One technique for sintering green compacts and imparting the required qualities to meet the specific application requirements is spark plasma sintering (SPS). This study examines the effects of SPS parameters (sintering temperature and pressure, holding time, and heating rate) and plantain peel ash (PPA) reinforcement concentrations (0, 5 wt%, 10 wt%, 15 wt%, and 20 wt%) on the microstructure, compressive strength, and wear characteristics of the fabricated Al–Mg–PPA composites. As a result of the ball milling machine’s high efficiency, the PPA reinforcement was evenly dispersed throughout the aluminum matrix after 90 min of milling. At lower sintering temperatures and pressures, microstructural flaws such as weak grain boundaries, micro-pores, and micro-cracks were more noticeable than at higher ones. The PPA reinforcement and magnesium powder (wetting agent) increased the composites’ compressive strength by improving the wettability between the PPA reinforcement and the Al matrix. At a weight fraction of 5 wt% PPA, the maximum compressive strength of 432 MPa was attained for the sintered composites, which is a 222% improvement over the sintered aluminum matrix. Additionally, the PPA reinforcement enhanced the wear properties of the sintered Al–Mg–PPA composites by reducing the wear loss. Increasing the wear load resulted in a higher wear rate. The COF for the sintered composites ranges from 0.049 to 0.727. The most consistent correlation between the wear rate and the COF is that as the wear rate decreases, the COF decreases, and vice versa. Abrasive wear was the dominant wear mechanism observed. Tear ridges, shear steps, micro-voids, and cleavages were seen on the composites’ fracture surfaces, an indication of a ductile-brittle fracture.
Read full abstract