Researches on the effect of the micro-texture on the cutting performance and the life of cutters are mostly aimed at turning cutters, but there are few researches on the ball-end milling cutter. On the basis geometry of the micro-texture, the distribution and the relationship among the geometric parameters of micro-pits are studied. A mechanical characteristic model of machining titanium alloy with the micro-texture ball-end milling cutter is established. Optimal parameters of the micro-texture are determined by the simulation. By the test of machining the titanium alloy with the micro-texture ball-end milling cutter, anti-friction properties, the influence laws of the micro-texture diameter on forces, and area occupancy on the tool wear are studied. This article provides a theoretical reference for determining the location of the micro-texture on ball-end milling cutter and selecting texture parameters reasonably. The anti-friction mechanism of the micro-texture is revealed by the theory, which provides a theoretical basis for the efficient processing of titanium alloy.