Abstract

Due to rising costs of raw material, companies of the aerospace industry increasingly seek to repair components of aircraft engines instead of replacing them. Particularly the clad repair of turbine blades made of high strength nickel-base alloys with directionally solidified or single crystalline structure is a difficult issue, especially due to high requirements regarding the conditions of the final part surface. The present work deals with the question whether the prediction of surface and subsurface conditions, e.g. surface topography and residual stresses, is possible after repairing the inhomogeneous nickel-base alloy Rene 80. For this purpose, laser deposition cladding is applied for the polycrystalline Rene 80, using the filler material Rene 142. In the following re-contouring process, the claddings are milled with a ball end mill cutter. The influence of the inhomogeneous base material and the shape of the clad on the cutting forces as well as the final part surface are experimentally investigated. Superficial residual stresses are measured and evaluated. The cutting forces and the final surface reveal characteristic variations in the area of the material deposition and the dendrites. A geometric process simulation shows that the prediction of cutting forces and surface conditions for the polycrystalline material is only possible to some extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.