This contribution reports the effects of an ultrasonic-vibration assisted ball burnishing process on the topological descriptors of nickel-based alloy Udimet®720. This material is of high interest for the transportation industry, and specifically for the aeronautical sector. Despite the acknowledged necessity to finish this material to achieve excelling mechanical performances of parts, surface integrity enhancement by means of plastic deformation through ball burnishing has seldom been explored in previous references so far. In this paper, different surface descriptors are used to report how the topology changes after ultrasonic-assisted ball burnishing, and how burnishing conditions influence that change. The burnishing preload and the number of passes are the only influential factors on surface change, whereas the feed velocity of the tool and the strategy reveal not to be relevant on the result. Additionally, the extent to which the process successfully modifies the objective surfaces is highly divergent depending on the original scale of the treated surface. The assistance of the process with vibrations also shows that the resulting topologies are characterized by a periodical pattern of repetitive peaks and valleys that are extended on the surface with a higher frequency in comparison to the non-assisted process, which could influence in the functional deployment of workpieces treated through it, and could deliver an advantage with regard to its non-assisted homologous process.