Land use and management changes affect the composition and diversity of soil bacteria and fungi, which in turn may alter soil health and the provision of key ecological functions, such as pesticide degradation and soil detoxification. However, the extent to which these changes affect such services is still poorly understood in tropical agroecosystems. Our main goal was to evaluate how land-use (tilled versus no-tilled soil), soil management (N-fertilization), and microbial diversity depletion [tenfold (D1 = 10−1) and thousandfold (D3 = 10−3) dilutions] impacted soil enzyme activities (β-glycosidase and acid phosphatase) involved in nutrient cycles and glyphosate mineralization. Soils were collected from a long-term experimental area (35 years) and compared to its native forest soil (NF). Glyphosate was selected due to its intensive use in agriculture worldwide and in the study area, as well as its recalcitrance in the environment by forming inner sphere complexes. Bacterial communities played a more important role than the fungi in glyphosate degradation. For this function, the role of microbial diversity was more critical than land use and soil management. Our study also revealed that conservation tillage systems, such as no-tillage, regardless of nitrogen fertilizer use, mitigates the negative effects of microbial diversity depletion, being more efficient and resilient regarding glyphosate degradation than conventional tillage systems. No-tilled soils also presented much higher β-glycosidase and acid phosphatase activities as well as higher bacterial diversity indexes than those under conventional tillage. Consequently, conservation tillage is a key component for sustaining soil health and its functionality, providing critical ecosystem functions, such as soil detoxification in tropical agroecosystems.
Read full abstract