Pruning is an agronomic practice that contributes to tea tree yield during cultivation, but little is known about how pruning improves yield through shifting bacterial communities in rhizosphere soil. Therefore, Meizhan tea (Camellia sinensis) was used as the research object to analyze the effect of unpruning and pruning on the growth and rhizosphere soil physicochemical indexes of the tea tree, and sequencing technology was used to obtain the diversity of soil bacterial communities. The results showed that leaf area, hundred bud weight and yield of pruned tea trees increased by 1.32, 1.40, and 1.84 times, respectively, and pH and available N, available P, and available K contents increased by 1.10, 1.07, 1.30, and 1.07 times, respectively, compared with unpruned treatment, while total N, total P, and total K contents decreased by 1.20, 1.37, and 1.13 times, respectively. Analysis of the bacterial community structure showed that the key differential bacteria between pruned and unpruned tea trees were Candidatus Solibacter, Acidibacter, Rhizomicrobium, Bryobacter, Solanum torvum, Mizugakiibacter, Nitrospira, Sphingomonas, and Granulicella. Among them, the bacterial abundance of Candidatus Solibacter, Bryobacter, and Nitrospira showed an upward trend and the rest showed a downward trend after pruned treatment. Interaction network analysis showed that the correlation between the total key genera of microorganisms and organic matter, total N, total K, and total P content in rhizosphere soil did not reach a significant level, whereas the correlation with soil available N, available K, available P, pH, and tea tree growth indexes were all positively and significantly correlated. It can be seen that pruning changed the structure of the rhizosphere soil microbial community of tea trees, promoted soil nutrient transformation, increased the content of soil available nutrients, and promoted the growth of tea tree.
Read full abstract