Variable microorganisms in particulate matter (PM) under different environmental conditions may have significant impacts on human health. In this study, we described a protocol for multiple analyses of the biological compositions in environmental PM. Five experiments are presented: (1) PM number monitoring by using a laser particle counter; (2) PM collection by using a cyclonic aerosol sampler; (3) PM collection by using a high-volume air sampler with filters; (4) culturable microbes collection by the Andersen six-stage sampler; and (5) detection of biological composition of environmental PM by bacterial 16SrDNA and fungal ITS region sequencing. We selected hazy days and a livestock farm as two typical examples of the application in this protocol. In this study, these two sampling methods, cyclonic aerosol sampler and filter sampler, showed different sampling efficiency. The cyclonic aerosol sampler performed much better in terms of collecting bacteria, while these two methods showed the same efficiency in collecting fungi. Filter samplers can work under low temperature conditions while cyclonic aerosol samplers have a sampling limitation for temperature. A solid impacting sampler, such as an Andersen six-stage sampler, can be used to sample bioaerosols directly into the culture medium, which increases the survival rate of culturable microorganisms. However, this method mainly relies on culture while more than 99% of microbes cannot be cultured. DNA extracted from the culturable bacteria collected by the Andersen six-stage sampler and samples collected by cyclonic aerosol sampler and filter sampler were detected by bacterial 16S rDNA and fungal ITS region sequencing.All the methods above may have wide application in many fields of study, such as environmental monitoring and airborne pathogen detection. From these results, we can conclude that these methods can be used under different conditions and may help other researchers further explore the health impacts of environmental bioaerosols.