Abstract

Novel specific 16S rDNA-targeted primers were successfully designed and applied to the characterization of endophytic diversity in Dendrobium officinale. Using the popular universal bacterial primers 27f/1492r, the fragments of chloroplast and mitochondrion 16S/18S rDNA were amplified from D. officinale. They shared high nucleotide identity with the chloroplast 16S rDNAs (99-100%) and with the mitochondrion 18S rDNAs (93-100%) from various plants, respectively, and both shared 73-86% identities with the bacterial 16S rDNA sequences in GenBank. The current bacterial universal primers, including 27f/1492r, match well with the chloroplast and mitochondrion 16S/18S rDNAs, which accordingly renders these primers not useful for endophytic diversity analysis. Novel 16S rDNA-targeted primers fM1 (5'-CCGCGTGNRBGAHGAAGGYYYT-3') and rC5 (5'-TAATCCTGTTTGCTCC CCAC-3') were designed, which show good specificity compared to the 16S/18S rDNAs of D. officinale, and perfect universality within bacteria except for Cyanobacteria. The primers fM1/rC5, together with 515f-GC/rC5, which overlaps the whole V4 region of 16S rDNA, were subjected to nested polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) to analyze the diversity of endophytic bacteria in D. officinale from three different sources in China. The results showed diversities in roots and stems of the plants from all three locations. Altogether, 29 bands were identified as bacteria, with the dominant group being Proteobacteria and the dominant genus being Burkholderia, some of which commonly has the function of nitrogen fixation and thus may play potentially important roles in D. officinale. Therefore, the nested PCR-DGGE method based on the novel primers provides a good alternative for investigating the communities and roles of endophytes in D. officinale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.