The resolution of Si complementary metal-oxide-semiconductor field-effect transistor (C-MOSFET) image sensors (CISs) has been intensively enhanced to follow the technological revolution of smartphones, AI devices, autonomous cars, robots, and drones, approaching the physical and material limits of a resolution increase in conventional Si CISs because of the low quantum efficiency (i.e., ~40%) and aperture ratio (i.e., ~60%). As a novel solution, a hybrid organic-Si image sensor was developed by implementing B, G, and R organic photodiodes on four n-MOSFETs for photocurrent sensing. Photosensitive organic donor and acceptor materials were designed with cost-effective small molecules, i.e., the B, G, and R donor and acceptor small molecules were Coumarin6 and C_60, DMQA and MePTC, and ZnPc and TiOPc, respectively. The output voltage sensing margins (i.e., photocurrent signal difference) of the hybrid organic-Si B, G, and R image sensor pixels presented results 17, 11, and 37% higher than those of conventional Si CISs. In addition, the hybrid organic-Si B, G, and R image sensor pixels could achieve an ideal aperture ratio (i.e., ~100%) compared with a Si CIS pixel using the backside illumination process (i.e., ~60%). Moreover, they may display a lower fabrication cost than image sensors because of the simple image sensor structure (i.e., hybrid organic-Si photodiode with four n-MOSFETs).
Read full abstract