Abstract

This study reports on the influence of air annealing and Na incorporation into the absorber on the performance of Cu2ZnSnS4 (CZTS) bifacial solar cells with FTO and W/FTO back contacts. Na was incorporated by depositing ∼12 nm thick NaF on the CZTS precursors prior to the sulfurization process via thermal evaporation. After sulfurization, some of the samples were annealed in air at 300 °C for 90 s and subsequently at 200 °C for 600 s. Transmission electron microscopy confirmed sulfurization of the W interlayer to form WS2 which improves the FTO ohmicity. Na incorporation improved grain size of the absorber as revealed by scanning electron microscopy. Non-annealed samples had the unwanted SnS2 phase while the air annealed samples, particularly those with both W interlayer and Na incorporation, were exempt from SnS2 phase, as was confirmed through grazing incident X-ray diffraction and Raman spectroscopy. These results suggest that absorber air annealing and Na incorporation enhance absorber crystal growth which is advantageous in reducing bulk carrier recombination. As a result, the efficiency was significantly improved from 3.0% for solar cells fabricated directly on FTO to 5.2% for those whose absorbers were air annealed, incorporated with Na and made on W/FTO. The latter also exhibits the highest external quantum efficiency response and calculated short circuit current density for both sides illumination. This indicates that the air annealing, Na incorporation and W interlayer are enhancing the performance of bifacial CZTS solar cells with FTO back contact for both back side and front side illumination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.