Abstract The very recent CAD paradigm of direct modeling gives rise to the need of processing 3D geometric constraint systems defined on boundary representation (B-rep) models. The major issue of processing such variational B-rep models (in the STEP format) is that free motions of a well-constrained model involve more than just rigid-body motions. The fundamental difficulty lies in having a systematic description of what pattern these free motions follow. This paper proposes a geometric perturbation method to study these free motions. This method is a generalization of the witness method, allowing it to directly deal with variational B-rep models represented by the STEP format. This generalization is essentially achieved by using a direct, geometric representation of the free motions, and then expressing the free motions in terms of composites of several basis motions. To demonstrate the effectiveness of the proposed method, a series of comparisons and case studies are presented. Highlights A new method to analyze geometric constraint systems for direct modeling. A generalization of the witness configuration method. A new method to characterize the constraint states of variational B-rep models.
Read full abstract