Abstract

Boundary-representation (B-rep) geometrical models, often mathematically represented using Non-Uniform Rational B-Spline (NURBS) surfaces, are the starting point for complex downstream product life-cycle evaluations including Computer-Aided Engineering (CAE). Boolean operations during B-rep model generation require surface intersection computations to describe the composed entity. However, for parametric NURBS surfaces, intersection operations are non-trivial and typically carried out numerically. The numerical intersection computations introduce challenges relating to the accuracy of the resulting representation, efficiency with which the computation is carried out, and robustness of the result to small variations in geometry. Often, for downstream CAE evaluations, an implicit, procedural knowledge of the Boolean operations between the composed objects that can resolve point containment queries (exact to the original NURBS bounding surfaces) maybe sufficient during quadrature. However, common point containment queries on B-rep models are numerical, iterative and relatively expensive. Thus, the first goal of the present paper is to describe a purely algebraic, and therefore non-iterative, approach to carrying out point containment queries on complex B-rep models built using low-degree NURBS surfaces. For CAE operations, the boundary representation of B-rep solids is, in general, not convenient and as a result, the B-rep model is converted to a meshed volumetric approximation. The major challenges to such a conversion include capturing the geometric features accurately when constructing the secondary (meshed) representation, apart from the efficiency of carrying out such a mesh generation step repeatedly as the geometric shape evolves. Thus, an ideal analysis procedure would operate directly on B-rep CAD models, without needing a secondary mesh, and would procedurally unify the geometric operations during CAD as well as CAE stages. Therefore, the second and broader goal of the present paper is to demonstrate CAD–CAE integration using signed algebraic level set operations directly on B-rep models by embedding or immersing the bounding surfaces within a discretized domain while preserving the geometric accuracy of the surfaces exact to the original NURBS representation during analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call