A new guided wave transducer model, time-delay periodic ring arrays (TDPRAs), is proposed and investigated in this paper for guided cylindrical wave generation and reception in hollow cylinders with application interests focusing on non-destructive testing (NDT) of piping/tubing. A finite element simulation has been performed for axisymmetric guided-mode excitation and reception with TDPRAs. By arranging a proper configuration of the time-delay profile and the electric-connection pattern of a ring array, unidirectional excitation and reception of guided waves can be achieved. The numerical results are obtained for the first three axisymmetrical modes and are compared with respect to generation efficiency and mode selectivity. Parametric influences on the performance of TDPRAs are discussed, combining a 2-D phase velocity-frequency spectrum approach with the mode dispersion and displacement structure analyses. The identification of converted modes in guided cylindrical wave reflections with a flexible TDPRA receiver has also been studied through sample notch reflection.
Read full abstract