Abstract
This paper considers the steady-state vertical vibrations of a rigid circular disk embedded at a finite depth below the free surface of a poroelastic medium. Biot's elastodynamic theory for porous media is used in the analysis. General solutions for axisymmetric poroelastic fields are obtained by using Hankel integral transforms. Analytical solutions for influence functions corresponding to four types of buried axisymmetric excitations are derived. The embedded disk problem is fomulated in terms of a set of coupled integral equations for unknown traction and pore pressure jumps across the disk. The kernel functions of the integral equations are the influence functions corresponding to buried vertical, radial and pore pressure ring loads. The system of integral equations is solved numerically by discretizing the disk into several concentric annular rings. Selected numerical solutions for displacements, vertical stress and pore pressure due to a buried fully flexible disk (uniform pressure) are also presented. The vertical compliances of a rigid disk are examined for different depths of embedment, poroelastic materials and hydraulic boundary conditions. Solutions for traction and pore pressure jumps are also examined. The present results are useful in the study of dynamic response of embedded foundations and anchors in poroelastic soils. Copyright © 1999 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.