Dynamic disturbance such as blasting may significantly affect the creep of rock. Quantification of the influence of dynamic disturbance on the creep behavior of rock is a prerequisite to the understanding of the long-term behavior of rock around excavations. In this study, a new creep-impact test machine that is capable of testing the rock failure behavior under combined creep loading and dynamic disturbance was introduced. We performed creep experiments on sandstone while a dynamic disturbance was applied. Axial strain, volumetric strain and acoustic emission (AE) events were measured. The results from the creep-impact experiment show that the rock creep was greatly affected by the dynamic disturbance. Dynamic disturbance may introduce further damage on rock and shorten the time-to-failure of creeping rock specimens. Combination of creep stress and dynamic disturbance resulted in two failure conditions: failure along with accelerating creep and failure during dynamic disturbance. If the dynamic disturbance was not followed by failure, the axial strain consisted of an instantaneous response as the dynamic disturbance was applied, followed by a primary phase of decelerating creep and a steady-state creep phase. This pattern was repeated after the next dynamic disturbance until the last dynamic disturbance that led to the failure. The creep resulted from micro-fracturing in the rock, which can be characterized by the cumulative AE energy if the AE events were monitored during the creep-impact test of rock. The creep behavior was more sensitive to dynamic disturbance under higher creep stress. Under the same creep stress, a dynamic disturbance with higher impact energy resulted in a higher axial strain rate, absolute volumetric strain rate and AE energy rate. Dynamic disturbance not only increased the axial strain rate but also promoted the dilatancy of the rock specimens. The failure of the rock specimens was mostly in the shear mode, and this failure pattern was merely affected by the dynamic disturbance, even though the specimens became more fragmented under the higher creep stress and higher impact energy.
Read full abstract