Abstract

ABSTRACTThe effects of spinning conditions on the fibrillation process of poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) polymer blends in an elongational flow within the fiber formation zone are systematically and thoroughly investigated. By considering the relationship between the changes in filament parameters with the focus on the maximum axial strain rate (ASR) and tensile stress at maximum ASR and the morphological evolution of the dispersed PLA phase along the spinline, the fibrillation process from rod‐like to nanofibrillar structures of the dispersed PLA phase in a binary blend with PVA matrix is elucidated. The final morphology of the dispersed PLA phase in PLA/PVA blends is controlled by the changes in the spinning conditions. The lengths and diameters of the PLA fibrils are caused not only by the deformation of their initial sizes but also by the combination of the deformation, coalescence, and break‐up process. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 44259.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.