The sun is most sustainable renewable energy, environmentally friendly and utilized for preservation of food and agricultural crops. The main objective of this experiment research work has focused on using renewable energy for evaporated moisture of foods fruit vegetables and herbs by drying system. The heat transfer equation are analyzed to effectively harness the temperature from the sun. Experimental data obtained were used to evaluate the properties of dry air on boundary region condition. Initial, testing was carried out under without load condition, and the result shows that the ambient and dryer’s internal temperature range between 29.3-40.2˚C and 37.4-60.3 ˚C, respectively, in Thailand a latitude of 14°0'48.46" North and longitude of 100°31'49.76" East (recorded average solar radiations and temperature on January 2023 - June 2024), average solar radiations range between 312 W/m2 and 513 W/m2. The indirect natural convection was design and calculated energy base on average temperature not higher than 55˚C, utilized sun daylight at 08:00 a.m. to 04:00 p.m. local time and clear sky or partially cloudy. Second, determination of design parameters; heat energy equation and steam table analysis. Final, utilization of the design under local time, solar radiation and the climatic local conditions and test with ginger slices (represent product in order to examine weight loss). The solar dryer’s curve front shape conduced on without load showed the heat transfer coefficient natural convections range between 3.7 and 4.5 W/m2 ˚C, the energy of dry air analysis range between 54.7 and 155.2 J/s and performance of drying rate range between 0.06 and 0.82 g/s, under increasing and decreasing trends of solar radiations from the time, date and climatic local region condition.